
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 1

Chapter 18 Recursion

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 2

Computing Factorial
Mathematic notation:
n! = n * (n-1)!, n > 0
0! = 1

Function:
factorial(0) = 1;
factorial(n) = n*factorial(n-1); n > 0

ComputeFactorial

https://liveexample.pearsoncmg.com/html/ComputeFactorial.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 3

Computing Factorial

factorial(4)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 4

Computing Factorial

factorial(4) = 4 * factorial(3)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 5

Computing Factorial

factorial(4) = 4 * factorial(3)
 = 4 * 3 * factorial(2)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 6

Computing Factorial

factorial(4) = 4 * factorial(3)
 = 4 * 3 * factorial(2)
 = 4 * 3 * (2 * factorial(1))

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 7

Computing Factorial

factorial(4) = 4 * factorial(3)
 = 4 * 3 * factorial(2)
 = 4 * 3 * (2 * factorial(1))
 = 4 * 3 * (2 * (1 * factorial(0)))

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 8

Computing Factorial

factorial(4) = 4 * factorial(3)
 = 4 * 3 * factorial(2)
 = 4 * 3 * (2 * factorial(1))
 = 4 * 3 * (2 * (1 * factorial(0)))
 = 4 * 3 * (2 * (1 * 1)))

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 9

Computing Factorial

factorial(4) = 4 * factorial(3)
 = 4 * 3 * factorial(2)
 = 4 * 3 * (2 * factorial(1))
 = 4 * 3 * (2 * (1 * factorial(0)))
 = 4 * 3 * (2 * (1 * 1)))
 = 4 * 3 * (2 * 1)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 10

Computing Factorial

factorial(4) = 4 * factorial(3)
 = 4 * 3 * factorial(2)
 = 4 * 3 * (2 * factorial(1))
 = 4 * 3 * (2 * (1 * factorial(0)))
 = 4 * 3 * (2 * (1 * 1)))
 = 4 * 3 * (2 * 1)
 = 4 * 3 * 2

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 11

Computing Factorial

factorial(4) = 4 * factorial(3)
 = 4 * (3 * factorial(2))
 = 4 * (3 * (2 * factorial(1)))
 = 4 * (3 * (2 * (1 * factorial(0))))
 = 4 * (3 * (2 * (1 * 1))))
 = 4 * (3 * (2 * 1))
 = 4 * (3 * 2)
 = 4 * (6)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 12

Computing Factorial

factorial(4) = 4 * factorial(3)
 = 4 * (3 * factorial(2))
 = 4 * (3 * (2 * factorial(1)))
 = 4 * (3 * (2 * (1 * factorial(0))))
 = 4 * (3 * (2 * (1 * 1))))
 = 4 * (3 * (2 * 1))
 = 4 * (3 * 2)
 = 4 * (6)
 = 24

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 13

Trace Recursive factorial
animation

Executes factorial(4)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 14

Trace Recursive factorial
animation

Executes factorial(3)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 15

Trace Recursive factorial
animation

Executes factorial(2)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 16

Trace Recursive factorial
animation

Executes factorial(1)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 17

Trace Recursive factorial
animation

Executes factorial(0)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 18

Trace Recursive factorial
animation

returns 1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 19

Trace Recursive factorial
animation

returns factorial(0)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 20

Trace Recursive factorial
animation

returns factorial(1)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 21

Trace Recursive factorial
animation

returns factorial(2)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 22

Trace Recursive factorial
animation

returns factorial(3)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 23

Trace Recursive factorial
animation

returns factorial(4)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 24

factorial(4) Stack Trace

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 25

Other Examples
f(0) = 0;

f(n) = n + f(n-1);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 26

Fibonacci Numbers
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

 indices: 0 1 2 3 4 5 6 7 8 9 10 11

fib(0) = 0;
fib(1) = 1;
fib(index) = fib(index -1) + fib(index -2); index >=2

fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1) = (1 + 0)
+fib(1) = 1 + fib(1) = 1 + 1 = 2

ComputeFibonacci

https://liveexample.pearsoncmg.com/html/ComputeFibonacci.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 27

Fibonnaci Numbers, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 28

Problem Solving Using Recursion

In general, to solve a problem using recursion, you break it

into subproblems. If a subproblem resembles the original

problem, you can apply the same approach to solve the

subproblems recursively. A subproblem is almost the same

as the original problem in nature with a smaller size.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 29

Characteristics of Recursion
All recursive methods have the following characteristics:

– The method is implemented using a conditional statement that
leads to different cases.

– One or more base cases (the simplest case) are used to stop

recursion.

– Every recursive call reduces the original problem, bringing it
increasingly closer to a base case until it becomes that case.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 30

Problem Solving Using Recursion
nPrintln(“Welcome”, n);
1. one is to print the message one time and the other is to
print the message for n-1 times.
2. The second problem is the same as the original problem
with a smaller size.
3. The base case for the problem is n==0. You can solve
this problem using recursion as follows:

public static void nPrintln(String message, int n) {
 if (n >= 1) {
 System.out.println(message);
 nPrintln(message, n - 1);
 } // The base case is n < 1
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 31

Think Recursively
Many of the problems presented in the early chapters can
be solved using recursion if you think recursively. For
example, the palindrome problem can be solved recursively
as follows:

public static boolean isPalindrome(String s) {
 if (s.length() <= 1) // Base case
 return true;
 else if (s.charAt(0) != s.charAt(s.length() - 1)) // Base case
 return false;
 else
 return isPalindrome(s.substring(1, s.length() - 1));
}

RecursivePalindromeUsingSubstring

https://liveexample.pearsoncmg.com/html/RecursivePalindromeUsingSubstring.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 32

Recursive Helper Methods

Sometimes you can find a solution by defining a

recursive method to a problem similar to the original

problem. This new method is called a recursive helper

method. The original method can be solved by

invoking the recursive helper method.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 33

Recursive Helper Methods
The preceding recursive isPalindrome method is not
efficient, because it creates a new string for every recursive
call. To avoid creating new strings, use a helper method:

public static boolean isPalindrome(String s) {
 return isPalindrome(s, 0, s.length() - 1);
}
public static boolean isPalindrome(String s, int low, int high) {
 if (high <= low) // Base case
 return true;
 else if (s.charAt(low) != s.charAt(high)) // Base case
 return false;
 else
 return isPalindrome(s, low + 1, high - 1);
}

RecursivePalindrome

https://liveexample.pearsoncmg.com/html/RecursivePalindromeUsingSubstring.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 34

Recursion vs. Iteration
Recursion is an alternative form of program
control. It is essentially repetition without a loop.

Recursion bears substantial overhead. Each time the
program calls a method, the system must assign
space for all of the method’s local variables and
parameters. This can consume considerable
memory and requires extra time to manage the
additional space.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 35

Advantages of Using Recursion

Recursion is good for solving the problems that are
inherently recursive.

